LT Spice Models    
The SPICE models below were found on different websites (mainly DIY AUDIO). I used them within the development and virtual testing of my projects with LT SPICE. The models below were used in projects that were transferred into real operating circuits and the real life measurements  corresponded with the simulations within the usual component tolerances. Thus the SPICE models listed below can be considered validated. 6SN7 .SUBCKT 6SN7 A G K BGG   GG   0 V=V(G,K)+0.54900933 BM1   M1   0 V=(0.020494606*(URAMP(V(A,K))+1e-10))**-0.76277031 BM2   M2   0 V=(0.66290422*(URAMP(V(GG)+URAMP(V(A,K))/16.448024)+1e-10))**2.2627703 BP    P    0 V=0.0012465111*(URAMP(V(GG)+URAMP(V(A,K))/24.812067)+1e-10)**1.5 BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00074417047*V(M1)*V(M2) BIG   IG   0 V=0.0003834058*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK  A    K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.0006816103*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK  G    K I=V(IG) * CAPS CGA   G    A 4p CGK   G    K 3p CAK   A    K 1.2p .ENDS MAT 03 .MODEL MAT03 PNP(BF=160 IS=1.4E-13 VAF=60 BR=5 VAR=7 RB=16 + RC=12 RE=0.35 CJE=57E-12 VJE=0.7 MJE=0.4 TF=1.08E-9 + TR=3E-8 CJC=40E-12 VJC=0.55 MJC=0.5 CJS=0 IKF=160M) BD 140 .MODEL bd140 pnp +IS=1e-09 BF=650.842 NF=0.85 VAF=10 +IKF=0.0950125 ISE=1e-08 NE=1.54571 BR=56.177 +NR=1.5 VAR=2.11267 IKR=0.950125 ISC=1e-08 +NC=3.58527 RB=41.7566 IRB=0.1 RBM=0.108893 +RE=0.000347052 RC=1.32566 XTB=19.5239 XTI=1 +EG=1.05 CJE=1e-11 VJE=0.75 MJE=0.33 +TF=1e-09 XTF=1 VTF=10 ITF=0.01 +CJC=1e-11 VJC=0.75 MJC=0.33 XCJC=0.9 +FC=0.5 CJS=0 VJS=0.75 MJS=0.5 +TR=1e-07 PTF=0 KF=0 AF=1 2SC5200 .MODEL 2SC5200 NPN + IS=3.0463E-11 BF=96.20 VAF=100 IKF=15.04256 ISE=5.6190E-11 NE=2.0 BR=4.849 IKR=1.05012 VAR=100 ISC=7.18E-8 NC=1.5 RE=0.0025 + RB=20.18 RBM=0.0014 IRB=1.0E-7 RC=0.01137 CJE=4.5000E-10 CJC=8.4915E-10 VJC=0.68977 MJC=0.54081 TF=6.8583E-10 + XTF=9.5721 VTF=10.425 ITF=6.8697E-2 TR=1.000E-8 XTB=1.45 EG=0.82 FC=0.5 mfg=Toshiba) KT66 .SUBCKT KT66 A G2 G1 K BGG   GG   0 V=V(G1,K)+1 BM1   M1   0 V=(0.051887963*(URAMP(V(G2,K))+1e-10))**-0.76669755 BM2   M2   0 V=(0.66175569*(URAMP(V(GG)+URAMP(V(G2,K))/6.5187433)))**2.2666975 BP    P    0 V=0.0018223197*(URAMP(V(GG)+URAMP(V(G2,K))/9.8506796))**1.5 BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.0010893248*V(M1)*V(M2) BIG   IG   0 V=0.00091115984*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2  IK2  0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.938072528*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.061927472) BIK3  IK3  0 V=V(IK2)*(URAMP(V(A,K))+2300)/(URAMP(V(G2,K))+2300) BIK4  IK4  0 V=V(IK3)-URAMP(V(IK3)-(0.0011955789*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP   IP   0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.0011955789*URAMP(V(A,K))**1.5))) BIAK  A    K I=V(IP)+1e-10*V(A,K) BIG2  G2   K I=URAMP(V(IK4,IP)) BIGK  G1   K I=V(IG) * CAPS CGA   G1  A  1.1p CGK   G1  K  8.1p C12   G1  G2 5.4p CAK   A   K  9p .ENDS 2SK369 .model 2sk369 NJF(Beta=82.61m Rs=1.556 Rd=1.556 Betatce=-.5 Lambda=414.5u + Vto=-.3552 Vtotc=-2.5m Cgd=46.72p M=.3623 Pb=.3905 Fc=.5 + Cgs=70.51p Isr=86.47p Nr=2 Is=8.647p N=1 Xti=3 Alpha=10u Vk=100 + Kf=74.85E-18 Af=1)
super triode, vinyl, audio, analog, single ended, SE, power amplifier, hybrid, tube, KT66, 6SN7, ECC88, Mosfet, Lundahl, MC phono stage, preamplifier, MM, MC, moving coil, moving magnet, LL1693, LL1667, LL9226, LL1933, RIAA, folded cascode, 2CS5200, MAT12, 2N3810, LL1660S, IXFN32N120P, balancing amplifier